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Abstract. This article presents the current status and new perspectives on the Structural
Learning Theory (SLT).3 Special consideration is given to how SLT has been influenced by
recent research in software engineering, and the range of possibilities it opens for instructional
research and practice in the twenty-first century. Starting with fundamental precepts of the
instructional process, a generalization of the SLT is proposed that offers an integrated, parsi-
monious, operational and predictive (as well as explanatory) account of competence, cognition
and behavior potentially from birth onward, and their implications for instruction. Supporting
examples and experimental research are cited in context.
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Overview

Instructional systems are conceptualized in terms of interactions between a
tutor and a learner (more generally between any two or more individuals)
with respect some shared content domain (Figure 1). The basic question is
how knowledge changes over time as a result of these interactions.

SLT attempts to answer the following basic questions and derives from the
associated basic assumptions:
1. What does it mean to know something, and how can that competence

be represented in a way that has behavioral relevance? Exactly what
is observable behavior in the first place? No matter how complex the
domain, the competence required to successfully perform tasks in that
domain is represented in SLT in terms of finite sets of higher and lower
order rules. These rules (defined in the next section) are called SLT rules
to distinguish them from the more familiar production rules. The tasks
themselves are represented in terms of input-output structures.

2. How do learners use and acquire knowledge? Why can some people solve
problems for which they seemingly have all of the requisite knowledge,
whereas others can not? Why do people often act in predictable ways
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Figure 1. Key elements and constructs in the instructional process.

even when they have many different options available? And, how is it that
some people solve a problem almost immediately whereas others have to
labor at the problem? Most would agree today that people have minds and
in that sense construct their own knowledge. In SLT, people are assumed
to solve problems and acquire knowledge by constructing (learning) new
(SLT) rules, the latter (in oversimplified form) being accomplished by
applying higher order rules to lower order rules.

3. How does one determine what an individual does and does not know?
Behavior is the only thing that instructional scientists can observe. It
is impossible to know all or exactly what any person does or does not
know that causes him to behave as he does. Instructional scientists do
not have license or the means to look inside. It is extremely unlikely, for
example, that observing brain scans, even if legal, would ever provide
the kinds of information necessary to predict how an individual might
perform on any given task. Explaining complex human behavior requires
higher level theory. In SLT, rules of competence are used as a standard
for measuring individual behavior. Individual knowledge is operationally
defined in terms of behavior judged relative to those competence rules.

4. How does knowledge change as learners interact with an external envir-
onment? How do initially naïve learners gradually come to acquire
mastery? What are the fundamental processes involved in longer term
developmental changes? SLT attempts to answer these questions.
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The remainder of this paper elaborates on the ideas and introduces new
software technologies supporting the construction of instructional systems
based on SLT.

Structural learning theory

Paralleling the initial four questions, SLT includes: (a) a formal way to
represent content as well as a formal method for constructing such represen-
tations, (b) a cognitive theory, (c) methods for operationally defining human
knowledge in terms of behavior and (d) a theory of instruction by which
external agents (e.g., tutors) may influence learning.

Theoretical constructs

The following theoretical constructs are prerequisite to understanding SLT.

Observable constructs. Specifying observable behavior might seem so
obvious that it hardly needs elaboration. This may be true with computers
where all inputs are reduced to ASCII characters, keystrokes and (e.g.,
mouse) events. It is not true in talking about human behavior. What serve
as effective inputs and outputs depends inextricably on what can safely be
assumed to act as inputs and/or outputs for the population of learners. (In
the following exposition the term Ss is used for learners when referring to
experiments.) An observable input or output (I–O) element in SLT can be
anything, concept, process or even idea. Room, number, a spoken phrase, the
SLT itself are all possible I–O. The primary requisite is that input or output
must be atomic (directly perceived) elements.

Hierarchical Representation. Any I–O element can be represented as a hier-
archy of elements at multiple levels of abstraction. That is, the same element
can be represented as an atomic whole, or in terms of the components,
categories or operations of which it is composed. Table 1 shows an I–O hier-
archy of variables and their values at various levels of refinement. Room, for
example, is more fully defined in terms of its components, bed and carpeting.
Carpeting, in turn, is further decomposed into one or more scatter rugs.

In SLT I–O behavior can be described at any number of levels of abstrac-
tion. An essential constraint is that behavioral equivalence must be preserved
at all levels of abstraction. In this example, room being presentable is
precisely equivalent to bed being made and carpeting being clean.

Problem domain. Problem domains in SLT are defined as sets of I–O pairs,
including outputs without specified inputs, that happen to be of interest to
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Table 1. Example of an I–O hierarchy of variables and their values at
various levels of refinement

INPUT

room <presentable, unpresentable> – component refinement

bed <made, unmade> – atomic

carpeting <clean, unclean> – prototype refinement

rug <clean, dirty, messy & dirty> – atomic

OUTPUT

room <presentable> – component refinement

bed <made> – atomic

carpeting <clean> – prototype refinement

rug <clean> – atomic

an outside observer (e.g., tutor). Problem domains may be well-defined or
otherwise (i.e., ill-defined).

Well-defined I–O domains correspond to behavioral objectives (specifica-
tions in software engineering) and are semantically meaningful sets of inputs
and outputs in which there is a unique output for each input. Simple examples
include:

column subtraction problems → differences
verbs → participles (ing endings)
[real world object(s) + real world action] → ‘subject’ ‘verb’

Operations. Operations in SLT are processes, called SLT rules, which when
carried out on given inputs in a domain generate unique outputs:

column subtraction
add ‘ing’ and drop the final ‘e’ (as appropriate)
write the subject (name of object), then the verb with a ‘matching’ ending.

Like I–O elements, operations (also called SLT rules) may be represented
as hierarchies at multiple levels of abstraction. The above I–O hierarchy
represents room at various levels of detail, both before and after some action
(i.e., operation) has been performed thereon.

Such operations in SLT are called SLT rules – to distinguish them from
simpler condition-action (production) rules. SLT rules are represented as
triples: Domain, Range (collectively an input-output Plan) and an Operation
(or Procedure).
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Figure 2. A sample hierarchy of SLT rules for cleaning rooms.

Figure 2 shows a hierarchy of behaviorally equivalent operations for
cleaning rooms. There is an inverse relationship between the level of opera-
tions in this hierarchy and the complexity of the data structures associated
with the corresponding parameters (in each operation’s domain and range).
For example, the clean operation operates on room as a whole, where room
represents the full structure shown above. The lower level rule make operates
on bed which in this example is a simple (i.e., atomic) element.

Problem. A problem consists of a given input structure, in which variables
in the structure have been assigned values (e.g., rug is dirty), and the goal
consisting of a data structure to which values are to be assigned (typically
derived by applying operations). A Plan is a specification (as in software
engineering) and is similar to a problem except that no input values are
assigned.

Higher order rules play a central role in SLT. A higher order rule is a
rule in which (some) inputs and/or outputs are themselves rules. One higher
order rule, for example, might construct rules for solving different kinds of
geometry construction problems from more basic operations (e.g., using a
straight edge and compass, see Polya, 1962; Scandura et al., 1974b). Another
(in the mind of a great 19th century inventor) might convert (some domain
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of) manual operations (e.g., using brooms for cleaning) into an analogous
one using electric power (e.g., vacuum cleaner).

Higher order problems and plans (specifications) also play a role in SLT
(U.S. Patent, Scandura, 2001, in press).

Content domains

The content associated with any given domain is defined in terms of observ-
able behavior and the competence necessary to account for such behavior. As
illustrated below, behavior is represented as hierarchies of inputs and outputs.
Similarly, competence is represented as hierarchies of behaviorally relevant
rules.

Content is not restricted to well-defined domains. Ill-defined domains are
arbitrary sets of I–O pairs, where the same input (in different contexts) may
be paired with different outputs, where no inputs may be specified and/or
where no one solution rule is known to exist. Many real world domains are
of this sort: (a) chess positions and corresponding moves, (b) poems covering
given topics and, (c) mathematical theorems and proofs.

To understand human behavior in such situations, it is essential to know
what kinds of competence may be required. To better appreciate the approach
taken in SLT, consider Artificial Intelligence (AI). In AI, the basic approach
is to systematically search through a space of possible next (or previous)
operations, trying and/or rejecting them, in turn, until a solution is found
or the search space has been exhausted. The problem has been likened to
constructing a bridge across a river on a foggy day, not knowing whether
the river has made a turn. This strategy cannot succeed in its simplest form
because the number of possibilities grows too quickly with the depth of the
search space. While various heuristics may improve search efficiency, the
methods used to identify such heuristics have been largely ad hoc.

SLT attacks the problem differently. Rather than asking how to combine
a given set of components to find a solution, SLT asks, “What kinds of
components are needed to solve problems (in the domain)?” Content analysis
in SLT is based on a systematic process, called Structural (cognitive Task)
Analysis (SA). Unlike ‘knowledge engineering’ in AI, which focuses on
domain specific knowledge, SA is equally concerned with (e.g., higher order)
rules that are domain independent. SA is necessarily carried out with some
population of Ss and/or context in mind.
1. The first step in SA is to define the domain, in particular the observable

inputs and outputs characterizing that domain. These inputs and outputs
are represented as hierarchies. Identifying I–O is not always a trivial task.
In teaching a non-swimmer to swim, for example, it is not immediately
obvious that the inputs and outputs refer to operations. In this case, the
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task may be defined in terms of converting one (already known) opera-
tion – namely floundering in the water – to another (i.e., moving through
the water while staying afloat by kicking and stroking with one’s arms).
Viewed in this way it is clear why starting the beginner with a ‘float’
is often more efficient than starting without. There is less to learn! The
learner never has to learn the equivalent of what is called the ‘dead-man’s
float’ because the float serves to keep the person above water. Learning
to kick and stroke serves the dual purpose of keeping the person afloat
when the aid is later removed.

It is instructive to consider the role of (e.g., spatial) images in this
context. The basic question is how to represent continuous reality in
digital form. The first thing to observe is that images can also be
represented hierarchically. Ignoring retinal imprints (and their associated
physiology) images may be viewed as icons – symbols which share
features in common with the reality they represent (e.g., Scandura, 1970).
Such icons correspond to the top level in a hierarchy, representing say, a
soccer field and the players on it. Lower levels in the hierarchy represent
more detail – the players, position of the ball, etc.

Domains may even be specified entirely in terms of outputs. Consider
situations where the inputs in question can only be determined in terms
of the solution procedures used. Domains characterized by creative tasks,
such as proving (or disproving) mathematical theorems, provide a case
in point. Such proofs typically are based on large numbers of (input)
assumptions and other theorems (lemmas, etc.), and often involve inor-
dinately large search spaces. Other examples include chess where the
same goal may be achieved from a variety of chess positions. Although
outputs may be highly abstract in nature (e.g., writing an ‘interesting’
poem), specifying outputs in a domain is a necessary minimum in SLT for
predictive purposes. Otherwise, one is reduced to observing and reporting
behavior after the fact.

2. The second step in SA depends on whether or not the problem domain
is well-defined. If so, one or more solution rules (represented as hier-
archies) may be constructed. If the domain is ill-defined, then one must
first extract well-defined sub-domains of problems in the domain to serve
as the starting point. Each well-defined sub-domain, in turn, will have at
least one solution rule.

3. A hierarchy of rules is constructed for each well-defined domain. Highly
systematic methods have been developed for this purpose.4 Suffice it to
say that each ‘slice’ through a given competence hierarchy represents
one of a set of behaviorally equivalent rules. Each rule in the hierarchy
generates behavior equivalent to that associated with every other one.
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The only difference is in the abstraction level of the operations
involved and the complexity of the data structures associated with input
and output parameters of the operations. Higher level rules operate on
correspondingly more complex parameters. This inverse relationship is
illustrated by the I–O data structures above (see Hierarchical Represen-
tation in Table 1) and the clean room rule hierarchy shown in Figure 2.
At the top of the hierarchy, for example, the clean operation in clean
(room) is simple (and highly abstract) while the parameter room has a
relatively complex structure. The next level operations, make (bed) and
clean (carpeting) provide more detail as to process but correspondingly
operate on less complex structures.

Rules for solving prototype problems in the well-defined sub-domains
represent a first level characterization of the competence associated with
the given problem domain. Starting with only the prototypes, however,
typically leaves many ‘gaps’ in complex domains. Many problems (I–O
pairs) are generally not covered by any prototype.

4. SA offers an explicit way to fill those gaps. This is accomplished by first
converting each rule into a higher order problem whose goal includes
that rule. Higher order problems, in turn, are generalized to I–O speci-
fications, or Plans, by ignoring the originally given values. Specifically,
the higher order plans include previously identified rules in their ranges
and/or domains.

5. A higher order rule is then constructed for solving problems specified
by each higher order plan. In general, a higher order rule will not only
generate the previously identified (lower order) rule, but other rules as
well (depending on values assigned to input data elements). In effect,
introducing higher order rules serves to fill gaps (in ill-defined domains).

Furthermore, rules that can be generated from existing rules become
redundant and may be eliminated from the set of rules characterizing
competence (underlying the given domain).

This process of converting rules into higher order problems and con-
structing higher order solution rules may be continued indefinitely. At each
stage, higher order rules become inputs and/or outputs for still higher order
plans and rules. Empirical research (e.g., Scandura, 1984a) demonstrates that
the introduction of higher order rules, and the elimination of redundant ones,
has two beneficial effects: (a) Individual rules (including higher order ones)
tend to become simpler and (b) the collective generating power of the rules
becomes greater. That is, greater varieties of problems in the original domains
can be accounted for via the identified rules. Repeating the process makes it
possible to account for arbitrarily and sufficiently broad ranges of tasks in the
problem domain with sufficiently small sets of higher and lower rules.
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Discussion. There are indefinitely large numbers of real world domains.
Analyzing such domains would correspondingly require an indefinitely large
amount of work – especially if one had to start SA from the beginning with
the introduction of each new domain. In fact, this is not necessary. SA is
a strictly cumulative process. Many rules, particularly higher order rules, are
applicable across multiple domains. Rather than having to start over with each
new kind of problem, one can build on the results of previous SA: Simply add
the new problems to the old domain, introducing new prototypes as necessary.
The process of SA continues as before.

To summarize, competence underlying given I–O domains is represented
by a set of higher and lower order rules, where each rule is represented as
a hierarchy. Each hierarchy represents an equivalence class of rules, each
representing a different level of automation. Given any domain character-
izing the behavior of interest, SA offers a systematic means of constructing
competence for solving ‘sufficiently broad’ sets of problems in the domain.

The same domain may be analyzed from any number of perspectives.
That is, any problem in a given domain may be solvable in any number of
different ways (using rules associated with the differing perspectives). The
fact that European students are commonly taught to solve column subtraction
problems by equal additions while American students use borrowing is well
documented in the literature (e.g., Durnin & Scandura, 1973). In practice,
the number of different perspectives required for instructional purposes is
usually quite small. In most domains, small numbers of alternative rule sets
are sufficient to account for the behavior of most learners.

In performing SA, it also is important to recognize that what serve as
inputs and outputs may vary across apparently similar sub-populations of
learners. Different sub-populations, for example, may make differential use of
spatial versus non-spatial inputs in direction finding.5 Similarly in soccer, for
example, a valid representation will depend on whether the field is viewed
from the perspective of a coach (with all players viewed from a common
perspective) or one of the players. In SLT, specifying what are the effective
inputs and outputs often goes a long way in defining what is to be learned.

SA has been used in practice for many years, and numerous examples exist
in the literature (Scandura, 1977c, 1982, 1997; Scandura & Scandura, 1980,
1999). These include both broad-based comprehensive analyses (Scandura et
al., 1971; Scandura & Scandura, 1980) and smaller more intensive analyses
(e.g., Scandura et al., 1974b; Wulfeck & Scandura, 1977). SA has evolved
considerably since its inceptions in the 1960s through the early 1980s
(e.g., Scandura, 1964a,b, 1977c, 1984b; Scandura et al., 1974b; Scandura
& Scandura, 1980). Indeed, the method itself had become increasingly
systematic and repeatable over the years, leading today to precise automated
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methods in software engineering (U.S. Patent Scandura, 2001, in press).
Other early references of interest include (Roughead & Scandura, 1968;
Scandura, 1968a,b, 1969a,b,c, 1971b, 1972).

Cognition

The author’s epistemological assumptions are constructivist in nature. Know-
ledge acquisition is an active process. People are assumed to have minds; they
learn and otherwise construct new knowledge. Unlike most constructivist
theories, however, SLT is deterministic in character and firmly rooted in beha-
vior (Scandura, 1971b, 1973, 1977a,b,c, 1978a,b). In the SLT, cognition has
always been characterized in terms of lower and higher order rules operating
under universal constraints. Lower and higher order rules (roughly speaking)
correspond to domain-specific and general-purpose knowledge, respectively.
On the other hand, all rules have the same form. The only difference between
lower and higher order rules is that the latter contain other rules in their
domain or range. Specific rules of knowledge correspond to one [or more]
specific levels in a rule hierarchy.

The use of and interactions between known rules are governed by a
universal control mechanism, and constrained by an assumed fixed processing
capacity and a characteristic processing speed. In its original form (e.g.,
Scandura, 1971b, 1973) control was characterized in terms of goal switching:
When faced with a problem, the learner is assumed to search the set of rules
in his processor (often called short term memory) to see if one applies. If so,
the rule is applied.6

If not, control is assumed to move to the higher level goal of deriving a rule
that does apply. The higher order rule is then applied, generating a new rule,
with control reverting to the next lower level. To wit, faced with a problem
for which no solution process is known, attention focuses on constructing
one. The process is assumed to continue until memory limits are readed or an
appropriate rule is found.

This control mechanism was shown to work both when no rule applies as
well as when more than one rule applies (Chapter 8 in Scandura, 1973). Later,
it also was shown to account for automatization processes whereby more
efficient rules are derived from known rules (Scandura & Scandura, 1980).
Supporting experiments were conducted under a wide range of conditions
(e.g., Scandura, 1971a, 1973, 1974, 1977c; Scandura & Scandura, 1980).
Many of the experiments were run under carefully controlled conditions,
where it was clear exactly what Ss knew on entry into the experiments and
where memory was explicitly eliminated as a factor.

Although suggestive, goal switching is extremely difficult to formalize
in a way that is completely independent of the higher order rules involved.
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Wulfeck and Scandura (Scandura, 1977, Chapter 14), for example, were able
to successfully simulate the growth of problem solving behavior over time.
Goal switching control and core higher order rules, however, were subtly but
inextricably intertwined in the simulation (program).

The search for a way to formally represent goal switching, with control
completely separate from higher order rules, has been long and hard. Rather
than goal switching as such, it gradually became clear that each level of ‘goal
switching’ might better be characterized in terms of searching the (input)
domains and ranges of (higher order) rules for (lower order) rules that match
given problems at different levels of embedding.

This mechanism first looks for available rules that directly match the
problem goal. When no such rule (or more than one) is found, the search
moves to rules whose outputs include rules that directly match. The process of
seeking deeper levels of matching continues until some predetermined level is
reached. (In humans, this level corresponds to processing capacity associated
with short-term memory.) Whenever a unique match is found, the rule directs
a search for inputs that satisty its domain. If the domain is satisfied, the rule
is applied. Otherwise, various options are available (e.g., needed rules [data]
may be added to the base set, or a new sub-problem may be defined with the
process continuing as above). Thus, if no solution rule is found for solving
(i.e., containing) the given problem, then the search continues for rules whose
outputs contain such rules. In the case of failure, the search moves to deeper
levels. Each search level seeks rules whose ranges include needed solution
rules (at some level). The recent patent (Scandura, 2001, in press) also shows
how searching for plans (rules without operations) and higher order plans
plays an important role in accounting for complex problem solving – e.g., the
commonly observed human behavior of formulating (new) plans before their
implementation.

Other studies offer support for the assumption that each individual has
a fixed processing capacity (e.g., number of rules that can be kept in mind
at one time) – irrespective of the task in question (Voorhies & Scandura,
Chapter 7 in Scandura, 1977). This result represents an extension of Miller’s
(1956) classic result indicating that people on average can process between
seven plus or minus two chunks of information. Support for a fixed processing
speed is more hypothetical and an area in which definitive research is needed.
Nonetheless, everyday observation suggests that individuals differ in the rate
at which they process information. Some people characteristically talk faster
than others, for example, while others are more characteristically deliberate.
Indeed, such information is commonly used, often informally, in assigning
people for various tasks. Research is needed to determine how much of such
behavior is due to innate characteristics and how much to what has been
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learned. One hypothesis, for example, is that (given otherwise equivalent
intellectual powers) faster innate processing leads to greater numbers of more
specific rules whereas characteristically more deliberate behavior leads to
more highly structured general-purpose higher order rules.

To summarize, the kind of behavior associated with any given problem
necessarily depends on what the learner knows at the time. Problem solving
is necessary when no solution rule is immediately available. Higher order
rules are assumed to play a key role in deriving solution rules. Behavior
is simpler when the learner already knows a solution rule. Learning does
not stop there, however. Other higher order rules are used for automatiza-
tion. Procedural complexity in rules is successively replaced with structural
complexity as behaviorally equivalent rules in a competence hierarchy are
constructed (learned). The more complex the domain and range structures of
a solution rule’s parameters, the more rapid and more flexible the behavior.
Automated rules correspond to rules at (or near) the top of the competence
hierarchies to which they belong (see Content).

Top level rules (in competence hierarchies) are atomic and, effectively,
are operational versions of what is commonly called declarative knowledge.
Interactions between higher order automatization rules and rules lower in a
competence hierarchy are governed by the same ‘goal switching’ control. The
result of such interactions are higher level rules – not higher order rules. In
the section on transitions, automatization is shown to close a theoretical loop
of sorts, making it possible to explain, predict and even control learning over
long periods of time. Studying the latter has been largely the exclusive domain
of developmental psychologists but it is equally important to instructional
scientists.

Higher order rules also play a crucial role in rule selection (e.g., in studies
of ‘interest’, ‘direction’ or ‘motivation’) where more than one solution rule
is available. In particular, the control mechanism directs the search to higher
order rules, irrespective of whether no matching rule is found, or whether two
or more rules are found. In the latter case, the subject is forced to choose.
Rather than introducing a fixed (and usually arbitrary) conflict resolution
technique (as is commonly done in expert systems), resolution in SLT is
handled in the same manner as all problem solving – via higher order selec-
tion rules. Irrespective of the selection rules introduced, the same control
mechanism is used. This fact was first noted in the literature in (Scandura,
1973, Chapter 8; compare with Scandura, 1971b).

Higher order automatization rules are also governed by the same prin-
ciples, and have been shown to account for the kinds of behavior associated
with Piaget’s developmental stages (Scandura & Scandura, 1980). Analysis
in terms of rules and higher order automatization rules provided an efficient
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and precise account for transitions from pre-operational to concrete operation
stages of development. Until pre-operational rules had been mastered, it was
impossible for children to learn what Piaget had defined as concrete opera-
tional behavior. Furthermore, the analysis also accounted for the problem of
horizontal decalage. Pre-operational behavior was observed where and only
where the requisite pre-operational behaviors had been mastered.

The latter problem had long defied easy explanation within both Piagetian
and behavioral frameworks. Automatization leads to the acquisition of rules
at progressively higher levels in hierarchies of behaviorally equivalent rules.
Ultimately, the top rule is learned. Elementary operations (procedural know-
ledge) associated with top level rules are mathematically equivalent to simple
relations (declarative knowledge). What was originally procedural knowledge
becomes declarative in nature (i.e., capable of serving as a basis for new
learning. This is true not only in a formal (i.e., mathematical) sense but
also behaviorally. Once automated, declarative knowledge effectively defines
new I-O elements. These new elements provide the grist for entirely new
kinds of learning (as with Piaget’s stages – e.g., see Scandura & Scandura,
1980, p. 127). This point is further elaborated below in the section on
transitions.

Assessing behavior potential

Given what a learner knows and his current state of knowledge, the above
analysis provides a basis for predicting that learner’s behavior on any given
problem. However, this is rarely known; and one certainly cannot know
everything. One cannot look inside a person’s head to determine what is
known, as one might a computer program (inside a computer). We can only
infer what is there by observing the learner’s behavior.

The basic question is how to determine most efficiently what a given
learner knows at any given point in time. From a SLT perspective three basic
problems have been identified.
1. How to distinguish alternative accounts of the same behavior (e.g., how to

determine the ‘best fit’ between borrowing and equal additions in column
subtraction? – see Durnin & Scandura, 1973).

2. How to distinguish known and unknown paths in rules in a given rule
hierarchy (e.g., the ability to subtract but not when there are zeros in
the top numeral? – see Scandura, 1971b; Scandura & Durnin, 1978a;
Durnin & Scandura, 1973; Hilke, Kempf & Scandura, 1977; Scandura &
Reulecke, Chapter 10 in Scandura, 1977).

3. How to distinguish the atomicity level of equivalent rules (slices) in
a given hierarchy? The problem is how best to distinguish between
behaviorally equivalent rules, in which the only difference is in process
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atomicity and corresponding structural complexity (with top level or
atomic rules corresponding to direct declarative knowledge).

Distinguishing between learned paths and levels in a given abstrac-
tion hierarchy is relatively well understood and researched (e.g., Durnin &
Scandura, 1973). Particularly relevant to instructional design is making know-
ledge assessment more efficient by testing at multiple levels in a hierarchy
(e.g., Scandura et al., 1986; Scandura, 1987b; Scandura & Scandura, 1987).
This approach uses the principle of ‘splitting the difference’ – selecting those
test items at each step that provide the most information about which paths
are learned and which are not. For example, if a person is successful on a
path in the middle of a hierarchy, then he is almost certainly able to solve
tasks associated with ‘easier’ paths (in which learned components are refined
into more elementary components). Conversely, failure would imply failure
on all paths that are more difficult.

Although the problem of distinguishing alternative accounts of the same
behavior has been addressed in earlier research (e.g., Durnin & Scandura,
1973; Reuleuke & Scandura, Chapter 10 in Scandura, 1977), more explicit
theory and basic experimental research is needed. Similarly, although
response time has been widely used in psychological experiments to distin-
guish alternative accounts of behavior, this research might well be put on a
firmer theoretical basis if higher order processes responsible for atomicity
were given more explicit consideration (e.g., Scandura & Scandura, 1980).

Assessment problems become even more complex when seeking to
determine what is learned with respect to sets of rules collectively. The
number of possible distinctions becomes much greater and assessment
considerably more difficult. A key question is whether one should bother with
such situations at all. Theoretically, it should be possible to obtain the same
information by assessing higher and lower order rules individually. Imple-
menting this approach, of course, requires constructing suitable test items for
given higher order rules. The feasibility of doing so has been demonstrated in
laboratory experiments (e.g., Scandura et al., 1971; Scandura, 1974).

Transitions

The above analysis (under Cognition) provides a basis for refining answers
to basic questions, “Why is it that some people can solve problems that
others cannot? And, how is it that initially naïve learners acquire new compe-
tence – and gradually come to acquire the mastery associated with experts?”
(Scandura, 1981, p. 139). The SLT control mechanism, together with requisite
rules, was shown to provide a uniform basis for explaining transitions from
naïve problem solver to neophyte. The same mechanism, together with higher
order automatization rules, was also shown to account for mastery. Once one
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rule in a competence hierarchy has been learned, automatization results in
the acquisition of higher level rules – ultimately leading to top-level atomic
operations with fully elaborated data structures.

For illustrative purposes, consider the task of constructing a statement
expressing one’s limited ability to speak German. The basic problem (given
→ goal) can be represented as:

[Idea: Know little German] → <?Proper descriptive phrase>

The naïve learner approaches the problem with a knowledge base
consisting of rules for expressing ideas associated with terms like ‘ich’ [I],
‘Deutsch’ [German], ‘ein wenig’ [a little], ‘sprechen’ [to speak], ‘kann’ [can],
‘bin’ [am] and ‘nur’ [only]. In order to construct an appropriate response, the
learner would also need some equivalent of a higher order rule to the effect,
‘put words in the order: subject, initial verb, adjectives and objects, other
verbs’.

The neophyte’s knowledge base might directly include a statement to
the effect “Ich kann nur ein wenig Deutsch sprechen” [I can only a little
German speak.] More precisely, this knowledge is represented by a rule for
constructing such a statement.

It is almost an oxymoron to refer to a master’s knowledge base in this
context, so we assume the master is a German teacher. The master’s know-
ledge base is likely to include a wide variety of phrases with very similar
meanings: “Ich kann nur ein wenig Deutsch sprechen”, “Ich bin im Deutschen
ein Anfanger” [I am in German a beginner], and so on. The master’s data
structures are far more complex, representing a variety of (sub-categories of)
meanings and corresponding expressions, enabling the expert to express fine
distinctions unavailable to the neophyte.

More generally, transitions from naïve to neophyte status are characterized
by the use of higher order rules to construct new rules. Once learned, a new
rule allows the neophyte to solve similar problems in a systematic manner.
Transitions from neophyte to master status involve application of higher order
automatization rules. These higher order rules transition learning from one
level in a rule hierarchy to another. They generate higher level (behaviorally
equivalent) rules with simpler operations and correspondingly more complex
parameters (data structures).

Application of SLT to Piagetian research (Scandura & Scandura, 1980)
exposed more global transitions where mastery in one domain made it
possible to learn qualitatively different domains. What constitute rules to be
learned in one domain effectively become – once mastered – input and output
elements for defining entirely new domains. Mastered rules in one domain
provide elements for the next.
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For example, it is often a painstaking process for young children to learn to
construct Arabic numerals, 1, 2, 3, 4, 5, . . . by combining previously learned
straight and curved line segments in precise patterns. Gradually, however,
the process becomes increasingly easier, faster and more reliable. Ultimately,
writing numerals becomes fully automatic, taking only the time required by
the physical actions themselves.

Once mastery has been achieved, these former operations effectively
become declarative (elemental in nature). Writing numerals can now serve
as input and output elements for defining basically new kinds of problems.
Teaching a young child how to perform column subtraction, for example,
would be meaningless unless the child first knew how to write numerals (or
perhaps to type with the aid of a computer). Similarly, it is hard to imagine a
person learning to write poems, for example, without having first mastered a
reasonable vocabulary.

Scandura and Scandura (1980) found that transition from Piaget’s pre-
operational stage of development to his stage of concrete operations was
possible only after certain operations had been fully mastered (i.e., auto-
mated). True number conservation, for example, was impossible until Ss had
mastered one-to-one mappings. Until then, number conservation problems
were effectively meaningless. According to SLT these principles are univer-
sally applicable, and play an essential role in all such transitions. Mastering
one domain provides a new foundation on which subsequent learning may be
based.

Teaching and learning

This section returns briefly to Figure 1, and particularly to what is meant by
‘diagnostic and tutorial expertise’. In oversimplified form, tutorial expertise
means asking the right questions and presenting the right information at
the right time relative to what the learner knows (Scandura, 1964b, 1987a;
Scandura & Scandura, 1987). Methods used to teach various kinds of content
derive from a common set of SLT principles. Optimal instructional techniques
depend as much on the learner’s state (of knowledge) as on the kind of content
(e.g., conceptual, procedural, problem solving).

Assuming input and output prerequisites, and well-defined compe-
tence, for example, optimized assessment involves choosing test items that
maximize the amount of information that can be gained about the learner’s
state (of knowledge). Initially, the tutor has no idea of what the learner
does and does not know. All paths in all rules in the target competence
hierarchy are question marks. At each stage of learning, the tutor should
choose test items providing the most information. Initially, this item will
be associated with some path in a rule located midway in the hierarchy.
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Figure 3. The General Purpose RuleTutor represented as a Flexform in Softbuilder.

Success here implies success on all subsumed paths of rules lower in the
hierarchy. Conversely, failure implies failure for all super-ordinate (encom-
passing) paths in rules higher in the hierarchy. Irrespective of success or
failure, maximum information is attained about what the learner knows.

Maximal information also is attained about what the learner needs to know
in order to overcome any inadequacies. Instruction should optimally be asso-
ciated with a path in the hierarchy for which all prerequisite components have
been learned. The process of ‘splitting the difference’ in testing (to obtain
maximum new information) and providing just that information needed (to
build on what is already known) continues until all paths have been learned.
This optimized process for testing well-defined (procedural) content, herein
referred to as a General Purpose Tutor (GPT), is represented as a Flexform
in Figure 3 (Scandura et al., 1986; Scandura, 1987a; Scandura & Scandura,
1987).

This GPT is entirely independent of the particular rule to be taught. Given
a suitable representation of any rule, the tutor can select those test items at
each stage of the process, which provide optimal amounts of information
about the learner’s state. It can also identify exactly the information that
the learner needs most. Perfect memory and rapid processing speeds would
enable an automated tutor to do this more efficiently, and with more reliability
than the best human teacher. The information that must be referenced with
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Figure 4. The general purpose curriculum tutor represented as a Flexform in softbuilder.

complex content at each stage of the process is likely to go far beyond what
any human might reasonably be expected to keep in mind.

These same principles may be applied in teaching problem solving skills.
Higher order rules may be taught in the same manner as other rules. Although
discovery learning is often an assumed prerequisite to higher order know-
ledge, research shows that what is learned depends far more on what is taught
than on the way it is taught (Scandura, 1964a,b). The main determinate is
the degree to which the target content has been identified and represented
in operational terms (as rules). Higher order rules, for example, can often
be taught by exposition more efficiently than by discovery (Roughead &
Scandura, 1968). The only caveat is that the higher order rules in question
must be specified with sufficient precision to enable (direct) instruction. To
date, little attention has been given to isolating requisite higher order rules.

What seems to matter most is what a learner knows when information
is presented. If given too soon, information goes unused, and can even
be misleading. Given too late and the learner can become discouraged,
disoriented and/or otherwise lose interest (Scandura, 1964b; Scandura et
al., 1969b). Although higher order rules have rarely been taught directly in
problem solving instruction, empirical research suggests to the extent the
higher rules can be precisely identified that this would be a very efficient
way to proceed.

Problem solving behavior is commonly taught by example plus practice.7

Optimized instructional decision making becomes considerably more
complex in this context. Learners typically use various combinations of
higher and lower order rules, and it is very difficult both to choose appropriate
test problems and to determine the most helpful information.

The GPT design is extended in Figure 4 to accommodate arbitrarily
complex (e.g., problem solving) domains. It is designed to accommodate
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the learner’s use of various combinations of higher and lower order rules in
attacking test problems. Assessing higher order knowledge in this context
depends on pre-specification of requisite higher order rules.

As shown in Figure 4 (Content), Structural Analysis (SA) can be applied
to ill-defined as well as well-defined content domains. In principle, SA can
also be applied dynamically as unanticipated issues arise during the course of
instruction. A learner might, for example, ask or answer a question that adds
a new dimension to any given SA. The tutor has the option of extending the
domain of discourse by dynamically extending the content domain and SA
thereon. The ability to extend the domain of discourse dynamically during
instruction is something that separates superior teachers from others. It is not
clear, however, to what extent such abilities can be automated.

The time-honored way to assure that a rule is mastered is practice.
Research (as well as common observation) shows that repeating a learned
solution results in faster surer responses. The current analysis suggests that
more might be done by way of pinpointing higher order automatization
rules, and teaching them to help learner’s automate previously learned rules.
Although supporting research is limited (Scandura & Scandura, 1980), SLT
suggests that automatization can be made more efficient by identifying and
explicitly teaching automatization techniques. The idea is to identify higher
order rules that assist learners to transition from rules lower in a set of compe-
tence hierarchies to rules at higher levels. (Note: The distinction between
higher order and higher level is crucial. Any given higher order automatiza-
tion rule may effect transitions to higher levels in an indefinitely large number
of rule hierarchies.)

Technology

Implementing the kinds of tutorial systems described above would be
relatively difficult with currently available technologies. Although major
advances have been made in recent years in component based software
and object oriented programming, for example, current methods make them
too complex and difficult to use by most instructional scientists. Indeed,
many working in theoretical computer science tend to avoid programming,
precisely because of its idiosyncrasies and complexity – things that are not
easily learned without spending inordinate amounts of time and effort.

Scandura.com’s Softbuilder system approaches this problem with its
abstract syntax tree (AST) based high level design (HLD) language. ASTs are
widely used in artificial intelligence because they directly reflect real world
data structures and operations (e.g., Scandura, 1987b, 1991, 1992, 1994). The
need for and use of such programming constructs as data types, global vari-
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Figure 5. AutoBuilder in the process of refining the virtual component, pickup_vacuum
(:current_rug;), into a sequence.

ables, semi-private methods and the like is eliminated entirely. Softbuilder
also ensures component interoperability and extensibility (i.e., the ability to
add new components as they are needed).

Softbuilder’s ability to model the real world on its own terms makes
it possible for computer literate instructional scientists (who are not also
programmers) to directly participate in building automated tutorial systems.

AutoBuilder research goes further in this direction. In addition to enabling
domain experts (as well as programmers) to more efficiently build and main-
tain complex software systems, AutoBuilder will guarantee that the software
will operate exactly as specified. AutoBuilder is based on recently patented
processes (Scandura, 2001, in press) and a prototype in which software speci-
fications and designs are represented in semantically meaningful terms at
multiple levels of abstraction. These abstraction hierarchies are guaranteed
to be internally consistent, with designs guaranteed to be correct with respect
to specifications.

A software system built with AutoBuilder is guaranteed to work as a whole
if each component in which it is implemented performs as specified. Imple-
mentation components can be made arbitrarily small, thereby making it easy
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Figure 6. Roles Softbuilder and AutoBuilder will play in construction of the general-purpose
tutors described above.

(either by inspection or automated theorem provers) to ensure that they are
correct. Figure 5 above shows an internally consistent design hierarchy for
cleaning rooms.

Softbuilder and AutoBuilder will play an essential role both in
representing the content to be taught and in constructing general-purpose
tutors (see Figure 6). Softbuilder includes specific support for interacting
systems – for example, interacting tutors and learners. At the highest level
of abstraction an Intelligent Tutor may be represented as a dialog between a
tutor and a learner with respect to given content.

dialog (content, tutor, learner)

The tutor and learner are independent agents, which communicate with
one another via the content. At the top level of abstraction (in a hierarchy)
these ‘agents’ may be characterized as follows:

learner (tutor_event:; learner_event)

Learner is a fully independent agent reacting to tutor created events but
independent of tutor per se.

tutor (learner_event: learner_model; tutor_event)

An automated tutor must know what learner knows at each stage of
learning in order to know what question to ask and how to update his model
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of learner based on learner’s answers.8 As discussed above, content may be
well-defined, ill-defined or dynamic.

Concluding remarks

This paper updates and extends the early SLT literature, with emphasis on
providing a more complete and coherent picture of SLT. Many instructional
designers, for example, have read only the limited version published in
Reigeluth (1983). Although many of the ideas expressed herein are natural
extensions of the earlier literature, much of that literature is scattered and
otherwise inaccessible. Similarly, while motivation for many of the ideas may
be found in the early literature (e.g., Scandura, 1971b, 1973, 1977c; Scandura
& Scandura, 1980), other key ideas have been developed only recently (e.g.,
Scandura, 1997, 2001). Higher order rules have played a central role in SLT
since its inception. This paper further shows how SLT offers a unified theory
of cognition, making it possible in principle to explain all behavior from birth
onward. Higher order knowledge produces new knowledge, which in turn
gradually becomes more automated. Automatization, in turn, introduces new
I–O elements, allowing the process to repeat at higher levels of learning.

A recent 300 plus page patent (Scandura, 2001, in press) details SA and
the universal control mechanism. There are many other areas, of course,
where further refinement and extension is needed.

Although earlier research will be suggestive in many cases, more work
is particularly needed in knowledge assessment. Distinguishing between
learned paths and levels in given abstraction hierarchies seem to be well-
understood and researched, although many of the ideas should be used more
widely in practice. Making knowledge assessment qualitatively more effi-
cient via integrated testing at multiple levels in a hierarchy seems ripe for
broad applications. More explicit theory and basic experimental research
is needed in other areas. For example, more explicit methods are needed
for distinguishing alternative accounts of the same behavior as well as for
distinguishing behaviorally equivalent SLT rules in a hierarchy.

In its current state, SLT can and should be applied far more widely in
instructional design. Indeed, major parts of structural analysis have been and
are being applied successfully in software engineering, and it is possible to
envisage broad areas of SLT application in artificial intelligence and intel-
ligent systems generally. SLT could even motivate formal developments in
these areas.9

In summary, this paper covers a lot of ground: (a) how previously acquired
and/or innate knowledge (including elements and rules) are prerequisite to
new learning, (b) how that new knowledge is constructed (by interactions
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between lower and higher order rules), (c) how mastery (via higher order
automatization rules) transitions procedural into declarative knowledge and
(d) how the process repeats at higher developmental levels, with declarative
knowledge forming new elements on which still higher level tasks may be
defined. This process has the potential of accounting for complex learning
from birth onward.

The paper also shows that what a learner does and does not know can be
determined by observing behavior, and how the information gained provides
a foundation for highly efficient teaching and learning. The paper also
touches on the kinds of technology necessary for implementing such theory
in constructing automated instructional systems and outlines relationships to
software research.

Nonetheless, much was omitted due both to space and time limitations.
More explicit reference to the previous literature would have been helpful
to serious scholars in the area, and certainly more attention could have been
given to examples. Many examples have been detailed in the earlier literature
but some would clearly benefit from reformulation in modern terms. The
current SLT formulation, for example, is more uniformly couched in terms
of abstract syntax trees, which are used to represent both data elements and
operations (and in turn rules, plans and problems).

Despite these limitations, the author hopes the reader will come away
with some sense of the exciting new possibilities SLT offers for fundamental
research in both cognition and instruction – and more important that some
readers will be motivated to apply and/or extend SLT in the future.

Notes

1. This article is based on a talk first given at an invitation conference on Epistemology,
Psychology of Learning and Implications for Learning and Instruction at the University
of Twente on March 31, 1999 while the author was a Fulbright Professor at Koblenz and
Dresden Universities, Germany.

2. The term ‘structural’ in the title refers to the SLT’s original emphasis on complex
structured subject matters such as mathematics.

3. Space limitations precluded inclusion of a summary overview of relevant research in
structural learning by the author and his collaborators, along with a theoretical discussion
of relationships with formal work in logic programming and artificial intelligence. The
interested reader is referred to http://www.scandura.com, where an unabbreviated copy of
this article may be found under “Knowledge Base”.

4. A Patent detailing key aspects of the process was formally approved in November 2000
and is currently in press.

5. Such differences may correlate with gender (due to well-documented hemispheric differ-
ences in male and female brains). Although such differences would be of interest in
defining sub-domains of problems, SLT puts the emphasis on individual behavior as
opposed to group averages.
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6. Concept attainment, for example, provides one, perhaps less than obvious application
of this idea. Bruner et al. (1956) showed how concepts could systematically be attained
by applying a uniform strategy to a given a set of instances (examples) of the concept.
Scandura (1964a) extended this idea to more complex kinds of concept learning based on
abstract card tasks.

7. Many mathematicians believe that the only way to become a good problem solver is to
solve a lot of problems.

8. The aforementioned analysis of tutor-learner interactions can be generalized to any set of
interacting intelligent agents. Interactions between interacting groups of individuals might
be formulated using the same basic machinery. For example, the soccer players in recent
research by Furbach, Stolzenburg, Baumgartner, Obst et al. interact at multiple levels and,
hence, might be conceptualized in this manner.

9. See Appendix B in “Structural Learning Theory” under knowledge base at http://www.
scandura.com.
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